NI 9403
32-Channel, TTL Digital Input/Output Module

ni.com/manuals

NATIONAL INSTRUMENTS
This document describes how to use the National Instruments 9403 and includes specifications and pin assignments for the NI 9403. Visit ni.com/info and enter rdsnsoftwareversion to determine which software you need for the modules you are using. For information about installing, configuring, and programming the system, refer to the system documentation. Visit ni.com/info and enter cseriesdoc for information about C Series documentation.

**Note** The safety guidelines and specifications in this document are specific to the NI 9403. The other components in the system might not meet the same safety ratings and specifications. Refer to the documentation for each component in the system to determine the safety ratings and specifications for the entire system. Visit ni.com/info and enter cseriesdoc for information about C Series documentation.
Safety Guidelines

Operate the NI 9403 only as described in these operating instructions.

⚠️ **Hot Surface**  This icon denotes that the component may be hot. Touching this component may result in bodily injury.

**Safety Guidelines for Hazardous Locations**

The NI 9403 is suitable for use in Class I, Division 2, Groups A, B, C, D, T4 hazardous locations; Class I, Zone 2, AEx nA IIC T4, and Ex nA IIC T4 hazardous locations; and nonhazardous locations only. Follow these guidelines if you are installing the NI 9403 in a potentially explosive environment. Not following these guidelines may result in serious injury or death.

⚠️ **Caution**  Do *not* disconnect I/O-side wires or connectors unless power has been switched off or the area is known to be nonhazardous.

⚠️ **Caution**  Do *not* remove modules unless power has been switched off or the area is known to be nonhazardous.
Caution  Substitution of components may impair suitability for Class I, Division 2.

Caution  For Zone 2 applications, install the system in an enclosure rated to at least IP 54 as defined by IEC 60529 and EN 60529.

Caution  For Zone 2 applications, connected signals must be within the following limit:
Capacitance ....................... 0.02 μF max

Special Conditions for Hazardous Locations Use in Europe
This equipment has been evaluated as Ex nA IIC T4 equipment under DEMKO Certificate No. 07 ATEX 0626664X. Each module is marked by 3G and is suitable for use in Zone 2 hazardous locations. If you are using the NI 9403 in Gas Group IIC hazardous locations or in ambient temperatures of –40 °C ≤ Ta ≤ 70 °C, you must use the device in an NI chassis that has been evaluated as EEx nC IIC T4, Ex nA IIC T4, or Ex nL IIC T4 equipment.
Special Conditions for Marine Applications

Some modules are Lloyd’s Register (LR) Type Approved for marine applications. To verify Lloyd’s Register certification, visit ni.com/certification and search for the LR certificate, or look for the Lloyd’s Register mark on the module.

⚠️ Caution ⚠️ To meet radio frequency emission requirements for marine applications, use shielded cables and install the system in a metal enclosure. Suppression ferrites must be installed on power supply inputs near power entries to modules and controllers. Power supply and module cables must be separated on opposite sides of the enclosure and must enter and exit through opposing enclosure walls.
Connecting the NI 9403

The NI 9403 has a 37-pin DSUB connector that provides connections for the 32 digital input/output channels.

Figure 1. NI 9403 Pin Assignments
Each channel has a DIO pin to which you can connect a digital input or output device. The 32 DIO channels are internally referenced to COM, so you can use any of the four COM lines as a reference for the external signal.

You can independently configure each DIO channel in software for input or output. The DIO channels have Schmitt trigger inputs and are compatible with 5 V TTL logic devices. Each input channel has hysteresis for improved performance with noisy and non-monotonic input signals. Each channel also has a pull-down resistor and includes overvoltage, overcurrent, and short-circuit protection. Refer to the Specifications section for more information about input thresholds and overvoltage protection. Refer to the Overcurrent/Short-Circuit Protection section for more information about overcurrent and short-circuit protection.
Refer to Figure 2 for an illustration of several types of digital devices connected to the NI 9403.

![Diagram of digital devices connected to NI 9403](image)

**Figure 2.** Connecting Digital Devices to the NI 9403
**Overcurrent/Short-Circuit Protection**

The overcurrent protection allows only a specified amount of current through the output channels to protect the NI 9403 from short circuits. If the NI 9403 goes into an overcurrent state, the module sets all the DIO channels to high impedance for approximately 280 milliseconds. When the channels are in this state, the NI 9403 can accept new line direction configuration and output state data but cannot pass valid input data to the software. After the protection period, the NI 9403 automatically recovers to the latest direction configuration and output state. If the overcurrent condition still exists, the module again sets the channels to high impedance. This cycle continues until the overcurrent condition is removed. Refer to the Specifications section for more information about the maximum output current.

**Sleep Mode**

This module supports a low-power sleep mode. Support for sleep mode at the system level depends on the chassis that the module is plugged into. Refer to the chassis manual for information about support for sleep mode. If the chassis supports sleep mode, refer to the software help for information about enabling sleep mode. Visit
Typically, when a system is in sleep mode, you cannot communicate with the modules. In sleep mode, the system consumes minimal power and may dissipate less heat than it does in normal mode. Refer to the Specifications section for more information about power consumption and thermal dissipation.

**Specifications**

The following specifications are typical for the range –40 to 70 °C unless otherwise noted. All voltages are relative to COM unless otherwise noted.

**Input/Output Characteristics**

Number of channels.......................... 32 DIO channels
Input/output type........................... TTL, single-ended
Default power-on line direction............ Input
Digital logic levels

Input
- Voltage ........................................... –0.25 to 5.25 V
- High, $V_{IH}$ ................................. 2.2 V min
- Low, $V_{IL}$ ................................. 0.8 V max
- Hysteresis, $V_{H}$ .......................... 0.2 V min

Output
- High, $V_{OH}$ ................................. 5.2 V max
  - Sourcing 100 μA .............. 4.75 V min
  - Sourcing 2 mA................. 4.4 V min
- Low, $V_{OL}$
  - Sinking 100 μA ............ 0.1 V max
  - Sinking 2 mA............... 0.26 V max

Input current (0 V ≤ $V_{in}$ ≤ 4.5 V) .... ±250 μA max

Module output current\(^1\) .................. 64 mA max
Input capacitance ............................... 30 pF

\(^1\) Module output current is the maximum guaranteed current that the module can drive from all the I/O lines without going into an overcurrent state.
Timing

Input

Setup time\(^1\) .................. 10 ns min
Hold time\(^2\) .................... 60 ns min

Output

Propagation delay\(^3\) ............. 330 ns max
Channel-to-channel skew\(^4\) ... 265 ns max

---

\(^1\) Setup time is the amount of time input signals must be stable before reading from the module.
\(^2\) Hold time is the amount of time input signals must be stable after initiating a read from the module.
\(^3\) Propagation delay is the amount of time after writing to the module that the output signals become valid.
\(^4\) Channel-to-channel skew is the amount of time between the first output signal updating and the last output signal updating.
Update/transfer time\textsuperscript{1}
\text{cRIO-9151 R Series}
Expansion chassis ............... 8 μS max
All other chassis............... 7 μS max
Direction change time\textsuperscript{1} ........... 18 μS max

Overvoltage protection
Channel-to-COM ...................... ±30 V max on up to 8 channels at a time; however, continued use at this level will degrade the life of the module.

\textsuperscript{1} The update/transfer and direction change times are valid when the module is used in a CompactRIO system. When used in other systems, driver software and system latencies impact these times.
MTBF ............................................... 763,325 hours at 25 °C;
Bellcore Issue 2, Method 1,
Case 3, Limited Part Stress
Method

Note  Contact NI for Bellcore MTBF specifications
at other temperatures or for MIL-HDBK-217F
specifications.

Power Requirements
Power consumption from chassis
   Active mode ......................... 1 W max
   Sleep mode ......................... 25 μW max

Thermal dissipation (at 70 °C)
   Active mode ......................... 1 W max
   Sleep mode ......................... 25 μW max

Physical Characteristics
If you need to clean the module, wipe it with a dry towel.
Weight ........................................ 150 g (5.3 oz)
Safety

Safety Voltages
Connect only voltages that are within the following limits.
Channel-to-COM .............................. ±30 V max on up to
  8 channels at a time,  
  Measurement Category I

Isolation
  Channel-to-channel ................. None
  Channel-to-earth ground
    Continuous ....................... 60 VDC,  
    Measurement Category I
    Withstand ....................... 1,000 V_{rms}, verified by a 5 s 
    dielectric withstand test

Measurement Category I is for measurements performed on 
circuits not directly connected to the electrical distribution system 
referred to as MAINS voltage. MAINS is a hazardous live electrical 
supply system that powers equipment. This category is for 
measurements of voltages from specially protected secondary 
circuits. Such voltage measurements include signal levels, special
equipment, limited-energy parts of equipment, circuits powered by regulated low-voltage sources, and electronics.

⚠️ **Caution**  Do *not* connect the NI 9403 to signals or use for measurements within Measurement Categories II, III, or IV.

### Safety Standards

This product is designed to meet the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA 61010-1

⚠️ **Note**  For UL and other safety certifications, refer to the product label or visit [ni.com/certification](http://ni.com/certification), search by module number or product line, and click the appropriate link in the Certification column.
Hazardous Locations

U.S. (UL) ........................................... Class I, Division 2,
Groups A, B, C, D, T4;
Class I, Zone 2,
AEx nA IIC T4
Canada (C-UL) ................................. Class I, Division 2,
Groups A, B, C, D, T4;
Class I, Zone 2,
Ex nA IIC T4
Europe (DEMKO)............................. Ex nA IIC T4

Environmental

National Instruments C Series modules are intended for indoor use
only but may be used outdoors if installed in a suitable enclosure.
Refer to the manual for the chassis you are using for more
information about meeting these specifications.
Operating temperature
(IEC 60068-2-1, IEC 60068-2-2) ..... –40 to 70 °C
Storage temperature
(IEC 60068-2-1, IEC 60068-2-2) ..... –40 to 85 °C
Ingress protection ......................... IP 40
Operating humidity
(IEC 60068-2-56)......................... 10 to 90% RH, noncondensing

Storage humidity
(IEC 60068-2-56)......................... 5 to 95% RH, noncondensing

Maximum altitude.......................... 2,000 m

Pollution Degree (IEC 60664)......... 2

**Shock and Vibration**

To meet these specifications, you must panel mount the system.

Operating vibration
  Random (IEC 60068-2-64).......... 5 \( g_{\text{rms}} \), 10 to 500 Hz
  Sinusoidal (IEC 60068-2-6)....... 5 g, 10 to 500 Hz

Operating shock
(IEC 60068-2-27)......................... 30 g, 11 ms half sine,
  50 g, 3 ms half sine,
  18 shocks at 6 orientations
Electromagnetic Compatibility

This product is designed to meet the requirements of the following standards of EMC for electrical equipment for measurement, control, and laboratory use:

- EN 61326 EMC requirements; Industrial Immunity
- EN 55011 Emissions; Group 1, Class A
- CE, C-Tick, ICES, and FCC Part 15 Emissions; Class A

Note For EMC compliance, operate this device with shielded cabling.

CE Compliance

This product meets the essential requirements of applicable European directives, as amended for CE markings, as follows:

- 2006/95/EC; Low-Voltage Directive (safety)
- 2004/108/EC; Electromagnetic Compatibility Directive (EMC)

Note Refer to the Declaration of Conformity (DoC) for this product for any additional regulatory compliance information. To obtain the DoC for this product, visit
ni.com/certification, search by module number or product line, and click the appropriate link in the Certification column.

Environmental Management
National Instruments is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial not only to the environment but also to NI customers.

For additional environmental information, refer to the *NI and the Environment* Web page at ni.com/environment. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

*EU Customers*  At the end of their life cycle, all products *must* be sent to a WEEE recycling center. For more information about WEEE recycling centers and National Instruments WEEE initiatives, visit ni.com/environment/weee.htm.
Where to Go for Support

The National Instruments Web site is your complete resource for technical support. At ni.com/support you have access to everything from troubleshooting and application development self-help resources to email and phone assistance from NI Application Engineers.

National Instruments corporate headquarters is located at 11500 North Mopac Expressway, Austin, Texas, 78759-3504. National Instruments also has offices located around the world to help address your support needs. For telephone support in the United States, create your service request at ni.com/support and follow the calling instructions or dial 512 795 8248. For
telephone support outside the United States, contact your local branch office:

Australia 1800 300 800, Austria 43 662 457990-0, 
Belgium 32 (0) 2 757 0020, Brazil 55 11 3262 3599, 
Canada 800 433 3488, China 86 21 5050 9800, 
Czech Republic 420 224 235 774, Denmark 45 45 76 26 00, 
Finland 358 (0) 9 725 72511, France 01 57 66 24 24, 
Germany 49 89 7413130, India 91 80 41190000, 
Israel 972 3 6393737, Italy 39 02 41309277, Japan 0120-527196, 
Korea 82 02 3451 3400, Lebanon 961 (0) 1 33 28 28, 
Malaysia 1800 887710, Mexico 01 800 010 0793, 
Netherlands 31 (0) 348 433 466, New Zealand 0800 553 322, 
Norway 47 (0) 66 90 76 60, Poland 48 22 3390150, 
Portugal 351 210 311 210, Russia 7 495 783 6851, 
Singapore 1800 226 5886, Slovenia 386 3 425 42 00, 
South Africa 27 0 11 805 8197, Spain 34 91 640 0085, 
Sweden 46 (0) 8 587 895 00, Switzerland 41 56 2005151, 
Taiwan 886 02 2377 2222, Thailand 662 278 6777, 
Turkey 90 212 279 3031, United Kingdom 44 (0) 1635 523545