Robert Stobie
Prime Focus Imaging
Spectrograph

Status

• Optics repair - in progress!
• Status of other fix and improvement projects
• Focus tilt analysis - not as bad as you thought
• Detector issues - efficiency closet issues
• Commissioning progress - polarimetry
• Budget

Last Meeting: Throughput/ Ghosts

• Inspection + laser in-situ measurements:
 – Yellow ghost due to coating problem on dewar window
 – Grey loss in camera and possibly collimator "main group"
 – UV loss in 3 subassemblies

• Instrument removed (Nov), optics shipped to Pilot Group in Calif (Dec)
• Disassembled into multiple, throughput measured by monochromator (Feb-Mar):
Throughput – Collimator

- No grey loss
- Sharp UV loss at 380 nm in both triplet and doublet
- Agrees with collimator laser measurements
- Solgel coatings good

Throughput - Camera

- Grey loss in camera triplet
- Same UV loss signature seen in camera quartet and triplet
- Agrees with camera laser measurement
- Transmission loss seen in field flattener (dewar window) consistent with coating problem
Comparison with on-sky

- Stacking all transmission measurements and dividing by expected (from coating witnesses and design): Agrees well!
- => 2 small problems and one big one:
 - flattener coating
 - camera triplet grey loss
 - UV loss signature in 4 multiplets

Flattener Coating Repair

- Vendor (Spectrum Thin Films) agrees front surface is bad. The other surface (same coating) is good.
- Witness sample curve from run looks good.
- Flattener has unique coating: humidity-resistant multilayer on fused silica. 3 other SPT multilayers on silica are good. Presume one-time process problem.
- Too risky to chemically remove bad coating - now being polished off by lens figuring vendor (Janos)
- SPT to recoat gratis, also apply new water resistant overcoat if UV tests good
- Will remeasure transmission after recoat
Camera Triplet – Grey Loss

- Seen as bright disk looking back into camera after removing detector
- Bright disk is at center of curved interface between NaCl and Silica in camera triplet (last element)
- Camera Triplet is the only multiplet with grey loss
- Fluid expansion bladder found to be empty. Bladder is common to both gaps.
- Bright disk vanishes when bladder refilled and pressure slowly released from multiplet. No apparent damage to optical surfaces
- No explanation for fluid loss: no evidence of leakage. Other multiplets OK so far.
- Currently watching fluid levels, experimenting to see if fluid is absorbed into RTV; will remeasure triplet transmission.

May 22, 2007 SSWG #17 UNC 7

UV Throughput Problem - Cause

- Common spectral signature + no substrate / coating in common
- Only multiplets => coupling fluid (0.8 mm pathlength)? Yes, 1 mm fluid samples all show signature
- Fluid shows signature after incubation with polyurethane (expansion bladders)
- Also see UV rolloff from viton in O-rings. Verified by Goodman spectrograph fluid (3 yrs)

May 22, 2007 SSWG #17 UNC
Compatibility Experiments

- Need to change fluid and/or bladder and O-ring material: incubate at 35°C & measure transmission (1 mm path)
- UV Fluids: current Cargille LL5610 ("solixane") or new LL3421 ("perfluorocarbon")
- Bladder: current polyurethane, bad with both fluids: need to change. 3 materials compatible
- O-ring: current viton OK with new LL3421 fluid. Current fluid only good with silicone O-Rings
- Fluid: new fluid OK with other materials in multiplets

UV Throughput repair

- Current plan: flush/ replace fluid with LL3421, replace bladder with compatible material
- Can be done without disassembling multiplets
 - Pro: avoid risk of contaminating coatings, exposing NaCl
 - Con: additional 1% transmission loss in 18 fluid/ glass interfaces since index match not as good
Repair plan

Mechanical Fixes/ Improvements

- Slitmask mechanism
 - severe reliability problems due to difficulty of aligning magazine, carrier, and focal plane chute
 - redesigned, rebuilt, in bench testing
- Grating stage flexure
 - out-of-spec flexure perpendicular to dispersion
 - repair current grating stage; purchase new, improved one
- Etalon flexure
 - ring centers do not flex the same: dual etalon difficulty
 - etalon seat redesigned; in machining
- Improve filter barcode reading reliability: done
- Fix guider interference (limits field): not done
- Improve baffling
 - moving baffle damage, maintainability. Material received
 - payload/ instrument interface. Material received
- Mount UW startracker. 7 deg field video; outreach webcam of telescope FOV. Interfaced
Spare Control System

• Full-up spares control boxes
• Mechanism simulators
• swap out failed box, troubleshoot on ground
• done - in checkout

Focus Tilt

• RSS Longslit PV PI's found unexpected focus gradation across spectrum, especially with narrow 0.6" slit where spectrograph focus contributes
 – Find magnitude of effect at least 3x expected from known longitudinal chromatic aberration
 – Suspect intended fixed detector tilt varied under flexure due to poor seating of detector, corrected in Nov 2006 (16.6' = 4500 microrad)
• Analyzed what would be ultimate performance if tilt mechanism added
Tilting the Detector

- With 0.6 arcsec slit, fixed tilt gives maximum 13% focus gradation
- With adjustable tilt, typical effect 2-3%, except ~5% in UV
- Design implications
 - tricky redesign of detector interface to minimize flexure
 - use PZT + DAC to avoid use of control axis
- Do we want to do this?

Detector – Full Well

- RSS detector gains were set such that the lowest gain ("BRIGHT/FAST") just saturates the A/D when the summing well is full (saturated 2x2 binning).
- PV observations found saturation at 25% A/D saturation, requiring 4x as many readouts for high S/N targets
- Dave Carter finds that CCD spec fine print says summing well is 4 pixels deep only in "low sensitivity" mode, where noise is >2x the standard ("high sensitivity") mode, which has 1 pixel deep fullwell.
- khn proposal: replace BRIGHT/FAST with low sensitivity mode, decrease gain in FAINT/FAST to improve dynamic range. Reasoning:
 - BRIGHT/FAST: for high photon rate projects
 - FAINT FAST: for projects requiring many readouts

<table>
<thead>
<tr>
<th></th>
<th>Noise e-</th>
<th>Noise e-/ADU</th>
<th>Plan 2x2 Sat</th>
<th>Actual 2x2 Sat</th>
<th>Dn Rnge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat Fst</td>
<td>6.34</td>
<td>5.22</td>
<td>1.21</td>
<td>0.50</td>
<td>4845</td>
</tr>
<tr>
<td>Brt Fst</td>
<td>10.04</td>
<td>10.86</td>
<td>0.93</td>
<td>0.24</td>
<td>1946</td>
</tr>
<tr>
<td>Fat Sbw</td>
<td>2.51</td>
<td>1.21</td>
<td>2.08</td>
<td>2.13</td>
<td>14561</td>
</tr>
<tr>
<td>Brt Sbw</td>
<td>3.73</td>
<td>2.97</td>
<td>1.26</td>
<td>0.88</td>
<td>13583</td>
</tr>
<tr>
<td>Fat Fst</td>
<td>4.60</td>
<td>3.00</td>
<td>1.53</td>
<td>0.89</td>
<td>8270</td>
</tr>
<tr>
<td>Brt Fst</td>
<td>15.65</td>
<td>9.29</td>
<td>1.68</td>
<td>1.15</td>
<td>2486</td>
</tr>
</tbody>
</table>
Detector - Overhead/ Reliability

- During polarimetric commissioning, found that detector readout overhead 2-4x actual readout time (time used in PIPT), e.g.
 - 2x2 Fnt/Slw: 25 sec, should be 12
 - 2x2 Fnt/Fs:t 16 sec, should be 4
- For any mode requiring many readouts, a serious efficiency hit 10-20% on 100sec readouts.
- Why?
 - unnecessary prep time? (S/W being modified)
 - disk save time. Does seem quite long
 - transfer to Quack? Quite variable
- Detector susceptible to crashing if click mouse at wrong time. Can cause severe extra "overhead" plus operator frustration.
- => Hardware and/ or software architecture may be inadequate to service I/O and user interface.
- (khn opinion) PDET HW/SW should be re-assessed from ground up.

Commissioning

Nov 2006 Polarimetric. Calibration:
- Linear polarimetric efficiency and position angle zeropoint with QTH lamp and polaroids
- Linear instrumental polarization with 2 standard stars in 300 and 900 l/mm gratings with M30 globular cluster in imaging mode
- Linear polarization position angle calibration and repeatability with 3 standard polarized stars in 300 and 900 l/mm grating
- After RSS return: < 400 nm
Polarimetry P-V

November 2006 Polarimetric PV

- SNe. 300 l/mm. 4 epochs of SN2006mq (late SNIa); 5 of SN2006mr (premax SNIa). Imaging pol of fields. (Nordsieck/Hole)
- High spectral resolution spectropolarimetry. T Ori, MWC120 (Herbig AeBe), 2300 l/mm, 0.6 arcsec (R ~ 10,000) at H alpha. (Vink, Armagh)
- Longslit spectropolarimetry of Orion nebula in support of FP polarimetry
- Fast spectropolarimetry (~100 sec) on Blazar PKS0537-441. (Fairall)
- All-Stokes spectropolarimetry of mCV (Potter, Brink)
- Analysis software still in work (UW)

Cost to Completion

- Includes repair cost estimate
- Still predicting CTC ~20% over CDR budget