Instrumentation for high-resolution spectropolarimetry in the visible and far-ultraviolet.

Kenneth H. Nordsieck, Kurt P. Jaehnig, Eric B. Burgh, Henry A. Kobulnicky, Jeffrey W. Percival, Michael P. Smith

Space Astronomy Laboratory
University of Wisconsin - Madison

- Linear spectropolarimetry of spectral lines
- Southern African Large Telescope (SALT) spectropolarimeter
- Far Ultraviolet SpectroPolarimeter (FUSP)

High-Resolution Spectropolarimetry

- Linear spectropolarimetry of resolved spectral lines a poorly exploited technique
 - not enough photons to do other than bright lines in bright objects
 - little experience in applying techniques
- Past applications: eg dust or electron scattered emission lines. In theory, doppler profiles give access to 3rd dimension (polarimetric tomography)
 - Scattered Hα in M82 (Visvanathan), η Car (Schulte-Ladbeck)
 - Need efficient imaging spectropolarimeter
Circumstellar Magnetic Field Diagnostics

• New techniques: magnetic diagnostics (solar physics heritage)
 • Zeeman (circular):
 – Visible: stellar photospheres, > 100 G
 • Hanle (linear: fluorescent scattering):
 – Dynamic winds (unresolved source), 0.1 – 1000 G
 – Developed in Sun only
 • Realignment:
 – Outer circumstellar envelopes (resolved reflection nebulae), < 1 µG?
 – Undeveloped

Instruments and techniques

• Spectral resolution: R ~ 2000 – 10,000 to resolve lines, avoid unpolarized continuum contamination and noise
• Etendue. For resolved nebulae, need high spectral resolution of diffuse sources
• Signal/ Noise. Need bigger telescopes, higher efficiency (SALT)
• Wavelength range. Most scattering lines in UV (FUSP)
Southern African Large Telescope Prime Focus Imaging Spectrograph

- Based on Hobby-Eberly Telescope (HET)
 - F/1.2 spherical primary: 11m aperture, hexagonal array
 - “Tilted Arecibo”: primary at fixed elevation; pick an azimuth, focal plane tracks. Track duration 0.75 – 2.5 hr.
 - Emphasis: spectroscopy and high S/N work
- 4-mirror Spherical Aberration Corrector (SAC), 8 arcmin field of view
- Prime Focus Imaging Spectrograph (PFIS) permanently mounted - spectropolarimeter
Instrumental Polarization

- **Concerns**
 - Steep reflections in SAC
 - Variable pupil during track

- **Coatings**
 - Primary: Al
 - SAC: LLNL enhanced Ag/Al

- **Find pol:**
 - < 0.1% 4' dia FOV
 - ~0.2% at 8' dia
 - Field effect > track effect
 - spec: correctable to < 0.04%

SALT Prime Focus Imaging Spectrograph

- **dual beam UV – NIR spectroscopy (320 nm – 1.7 μm).**
- **8 arcmin FOV.** Slitmasks and long slit.
- **all refractive; 150 mm beam.**

Visible beam commissioning in late 2004.

- **Spectroscopy/ polarimetry with Volume Phase Holographic ("VPH") gratings 320 – 900 nm.**
 - spectrograph/ detector efficiency 60% peak; 30% @ 320 nm
 - $R = 600 - 5300$ (1.25 arcsec slit – median seeing+telescope) $R -> 10,000$ (0.5 arcsec)

- **Dual etalon Fabry-Perot spectroscopy/ polarimetry 430 – 860 nm.**
 - $R = 2500$, "bullseye“ 3 arcmin;
 - $R = 13,000$, 1.5 arcmin
Imaging VPH Grating Spectropolarimetry

Volume Phase Holographic Grating

Beam-splitter

Wave-plate

NGC 7027

Fabry-Perot Imaging Spectropolarimetry

Fabry-Perot Etalons

Na D

NGC 7027

Aug 27, 2002 SPIE Polarimetry in Astronomy

Aug 27, 2002 SPIE Polarimetry in Astronomy
Polarimetry - Beamsplitter

- Calcite Wollaston Beamsplitter in collimated beam after grating
- Mosaic of 9 calcite prisms in framework
- Split +/- 45 deg polarizations ~ 5 deg => 4 arcmin at detector into two half-fields “O” and “E”

Polarimetry - Waveplates

- Pancharatnam superachromatic waveplates: stack of 6 very thin retarders
- In collimator after field lens (to minimize diameter)
- ½ and ¼ waves from 320 – 1.7 microns
- very large SALT etendue (aperture x FOV) limits performance of waveplates in UV – reduced efficiency; sensitivity to pupil
Waveplate efficiency

- Pancharatnam modified for off-axis performance
- Overall polarimetric efficiency reduced, but still > 98% (halfwave), 94% (quarterwave)
- Pupil shape sensitivity not significant for halfwave
- Quarterwave more sensitive to pupil effects, due to manufacturing limits on element thickness

Far Ultraviolet SpectroPolarimeter (FUSP)

- Wavelengths 105 – 150 nm
 - 1st polarimetry below Lyα
- Resolution $\lambda/\Delta\lambda = 1800$
 (0.05 nm; 180 km/sec)
 - aperture 20” (50 cm)
 - stressed LiF waveplate
 - diamond brewster-reflection polarization analyzer
 - spherical holographic grating
- Sounding Rocket in development:
 - two-stage rocket, apogee 400 km
 - science time 400 sec
- Scheduled first launch: 2003
FUSP Spectropolarimeter

Zero-Order Sensor
Fold Mirror
Correcting Lens
Diamond Brewster Mirror
Rotating LiF Waveplate
Spectrometer Detector
Grating

FUSP Polarimetric Optics

- **LiF Waveplate**
 - 12 mm square, 1.5 mm thick
 - 15 lbs pressure on side => ½ wave at 125 nm
 - absorption edge 105 nm
 - rotated in 11.25 deg steps
- **Diamond brewster**
 - 10 mm square, 0.5 mm thick CVD diamond
 - angle 72.5 deg
 - FOV 12x17 arcmin
FUV Spectropolarimetry of ζ Ori

- Hanle Effect simulation: dipole field embedded in spherical wind
- Note lower Hanle field lines appear first
- 3 G detectable with FUSP...

Summary

- High spectral resolution linear spectropolarimetry potentially very powerful if we can get enough photons
 - polarimetric tomography
 - magnetic diagnostics
- Visible: SALT 11m
 - $R = 1000 – 5000$ imaging grating spectropolarimetry
 - $R = 300 – 13000$ imaging Fabry-Perot spectropolarimetry
- VUV: FUSP 0.5m sounding rocket
 - $R = 1800, 105 – 145$ nm
 - First polarimetry below Lyα
Backups

PFIS Polarimetric Modes

<table>
<thead>
<tr>
<th>Linear</th>
<th>Circular</th>
<th>All-Stokes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{2} \lambda$</td>
<td>$\frac{1}{4} \lambda$</td>
<td>$\frac{1}{2} \lambda$</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>45</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>22.5</td>
<td>-</td>
<td>22.5</td>
</tr>
<tr>
<td>67.5</td>
<td>-</td>
<td>22.5</td>
</tr>
<tr>
<td>11.25</td>
<td>-</td>
<td>45</td>
</tr>
<tr>
<td>56.25</td>
<td>-</td>
<td>45</td>
</tr>
<tr>
<td>33.75</td>
<td>-</td>
<td>67.5</td>
</tr>
<tr>
<td>78.75</td>
<td>-</td>
<td>67.5</td>
</tr>
</tbody>
</table>
Atomic Scattering Diagnostics

- Line scattering (fluorescence), no field
 \[\sigma = \text{monochromatic} \approx 10^{-18} \text{ cm}^2 \]
 \[I(\theta) = E_1 I_e(\theta) + (1 - E_1) I_{iso} \]
 \[p(\theta) = \frac{3}{4} E_1 \sin^2 \theta / (1 - \frac{1}{4} E_1 + \frac{3}{4} E_1 \cos^2 \theta) \]

 \(E_1 \) is the "polarizability", comes from QM, a function of \(J_i, \Delta J_i, \Delta J_f \).

- B-field modifies polarizability
 \[\Rightarrow \text{Diagnostics. Circumstellar application:} \]
 - \(\tau \ll 1; \text{ point illuminator} \)
 - Resonance fluorescence (ground state) emission

Imaging High Resolution Polarimetry of Nebulae

Magnetic Realignment pilot project:
- spatially resolved nebulae with atomic resonance scattering. Na D in:

- **Planetary Nebulae**
 - Fluorescent NaD seen in 5 PN's by Dinerstein, et al 1995
 - PN magnetic field geometry used to explain PN bipolar geometry
 - Sensitive to \(B < 1 \mu \text{G} \)
 - Resolve expansion profile (R > 10,000) to isolate 90° scattering at line center
 - Requires large telescope: \(\sim 50 \text{ R 20 arcsec nebula} \)